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Simple hierarchical systems: Stability, self-organized criticality, and catastrophic behavior

E. M. Blanter and M. G. Shnirman
International Institute of Earthquakes Prediction Theory and Mathematical Geophysics, Varshavskoe sh. 79/2, Moscow 113556

~Received 5 November 1996!

A description of various kinds of behavior for a hierarchical model of defect development, representing a
transition from stability to catastrophe, is suggested. It is shown that the self-organized criticality regarded as
a linear form of the magnitude-frequency relation on a wide area of parameter corresponds to different kinds
of system behavior. Examples of the systems representing self-organized criticality with stationary, periodic,
and chaotic relation between the density of defects and the level of hierarchy are suggested. A complex
behavior, when areas of self-organized criticality alternate with areas of catastrophe and/or stability, is ob-
served in the model. Examples considered in the paper perform basic kinds of possible behavior on the
transition interval from stability to catastrophe for a simple class of hierarchical systems.
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PACS number~s!: 64.60.Lx, 05.45.1b, 05.40.1j
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I. INTRODUCTION

Hierarchical systems of defects development are wid
used in the modeling of destruction experiments@1,2#, areas
of sources of big earthquakes@3#, areas of triple junctions
@4#, and global seismicity@5–10#. The defects in hierarchica
systems are referred to as cracks for modeling of destruc
experiments or as earthquakes in seismic models. The siz
defects is related with a level of hierarchy and correspond
the size of cracks or source area of earthquakes. Hierarc
structure represents multiscale properties of real systems
are reflected in the power-law form of certain basic relatio
@11#.

The linear behavior of the magnitude-frequency relat
in a log/log plot, observed for the world seismicity@12#, has
been recently explained as self-organized critica
@10,11,14,16#. The self-organized criticality phenomeno
was observed in several seismic models such as the
lanche models@13,14,10#, uniform Burridge and Knopoff
model@17#, and the model of Olamiet al. @18–20#. To gen-
eralize different observations in real and model systems,
self-organized criticality may be understood as a linear fo
of the magnitude-frequency relation on the log/log plot fo
large area of system parameters. In the present work we
the notion of self-organized criticality in this sense. Recen
the self-organized criticality was demonstrated by vario
hierarchical systems: hierarchical models with feedback@6,9#
and dynamic hierarchical models with pattern healing@8,21#.

A phase transition from stability to catastrophe was o
served in some hierarchical models@1,6# and applied to the
description of the behavior of cracks in laboratory expe
ments of sample destruction. In the phase of stability
number of cracks exponentially decreases when the siz
the cracks grows. There is no sufficiently large cracks in t
case. The catastrophic behavior is characterized by an
crease of the density of cracks with linear size and the
pearance of a global fracture that corresponds to the t
destruction of a sample. Thus there are three kinds of p
sible behavior observed in hierarchical systems: stabi
self-organized criticality, and catastrophe. A phase transi
from stability to self-organized criticality was observed in
551063-651X/97/55~6!/6397~7!/$10.00
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dynamic hierarchical model@8,21#. In the present paper a
investigation of self-organized criticality appearing insi
the transition area between areas of stability and catastro
in a simple one-parametrical hierarchical model is sugges

A general description of the model is suggested in Se
II–V. A phase transition from stability to catastrophe
terms of the model considered is described in Sec. VI. H
archical systems presented in Sec. VII have a transition
terval of the self-organized criticality between the areas
stability and catastrophe. Examples of different kinds of
lationships between the density of defects and the co
sponding level are suggested in this section. These exam
correspond to a linear form of the magnitude-frequency
lation for all values of the parameter inside the transiti
interval. A more complicated behavior demonstrating the
termittency of intervals of self-organized criticality with in
tervals of catastrophe is suggested in Sec. VIII. The alter
tion of stability and self-organized criticality areas
described in Sec. IX. Results and possible analogies are
cussed in Sec. X.

II. GENERAL DESCRIPTION OF THE MODEL

We consider a hierarchical system withL levels and a
branch numbern ~Fig. 1!. The first level is the lowest in the
system. Each element of the upper levell11 is composed of
n elements of the previous levell . Elements of levell com-
posing one element of the upper levell11 are referred to as
a group. There are two possible states of elements of
system. One of them is referred to as a defect state. The
of an element of the levell11 depends on the configuratio
of defects in the corresponding group of elements of
previous levell . Some configurations of defects in the grou
are specified as critical configurations. If there is a critic
configuration of defects in a group of elements of levell ,
then the corresponding element of the upper levell11 is in
the defect state. There are no defects without the corresp
ing critical configuration below, except that of the first lev
of the system. Thus, the states of all elements of the sys
are determined by the state of the first level. It is assum
that all elements on each level are independent of one
6397 © 1997 The American Physical Society
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6398 55E. M. BLANTER AND M. G. SHNIRMAN
other and have the same probability to be a defectpl . Then
densities of defectspl for all levels are determined by th
density of defectsp1 of the first level. The density of defect
of the initial levelp5p1 is the single parameter of the sy
tem.

The probability of a configuration containingk defects at
level l is equal topl

k(12pl)
n2k. The density of all critical

configurations at levell is expressed as follows:

F~pl !5 (
k51

n

Akpl
k~12pl !

n2k, ~1!

whereAk is the number of critical configurations containin
k defects. The density of defects of the upper levell11 is
equal to the density of critical configurations on the previo
level l ; then,

pl115F~pl !. ~2!

The form of the transition functionF is independent of the
level of the system@see Eq.~1!#. The behavior of the densi
ties of defectspl is determined by the properties of the tra
sition functionF on the interval (0,1) and the density o
defectsp on the first level of the system.

III. MAGNITUDE-FREQUENCY RELATION

The magnitude-frequency relation is often applied to
scribe the behavior of complex systems of different natu
In the present work we use the magnitude-frequency rela
to separate the main kinds of behavior of the system. Le
define the magnitude-frequency relation for a given class
hierarchical systems. In the model described above the
number of elements of the levell exponentially decreas
when l grows:

N~ l !5CnL2 l , ~3!

whereL is the total number of levels,C is the total number
of elements on the highest level of the system. If the den
of defects on thel th level is equal topl , then the average
number of defects of this level is as follows:

^Nl&5N~ l !pl . ~4!

FIG. 1. Example of an hierarchical system with branch num
3. A group of 3 elements of the previous level composes an
ment of the next level.
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All elements of the same level have the same size, wh
exponentially depends on the level. If the size of the e
ments of the first level is taken as unity then the size of
elements of levell is

S~ l !5nl . ~5!

In seismic investigations the magnitude of an earthqu
is assumed to be proportional to the logarithm of the size
the source area. Similarly the magnitude of the defect
level l in the model is defined as follows:

M ~ l !5 log10S~ l !5 l log10~n!. ~6!

The magnitude-frequency relation describes a relation
tween the number of defectsNl and the magnitudeM ( l ).
From Eqs.~3!–~6! it follows that

log10Nl5L log10~n!2M ~ l !1 log10pl1 log10C. ~7!

IV. THE AREA OF STABILITY

Let us consider the transition functionF(x) defined by
Eq. ~1! in the interval (0,1). If configurations containing on
one defect are not critical@A150 in Eq. ~1!#, then the fixed
point 0 @F(0)50# is stable@Fig. 2~a!#. This means that if
p is close to zero, than the sequence of densities of def

r
e-

FIG. 2. Hierarchical system representing a phase transition f
stability to catastrophe. Branch number of the model is equal t
All configurations including more than 2 defects are critical.~a!
Transition functionF(x). The area of stability corresponds to th
interval (0,x0), the area of catastrophe corresponds to the inte
(x0,1). Unstable fixed pointx0 is a point of the phase transitio
from stability to catastrophe.~b! Densities of defects vs level o
hierarchy for different values of parameterp. ~1!: in the area of
stability p50.347,x0; ~2!: in the point of phase transition
p5x0'0.3471289;~3!: in the area of catastrophep50.35.x0. ~c!
Magnitude-frequency relation for different values of parameterp.
~1!: in the area of stabilityp,x0; ~2!: in the point of phase transi
tion p5x0. A slope of the straight line~2! is equal to unity.



b

n

th

y

t

io

o

be
ct

d

ur

il-

in
al

s

iti
f
ta

ero
ve

he,
nsi-

ior

og
or

ber
cts

r

the
l is
re

-
f

he
s

55 6399SIMPLE HIERARCHICAL SYSTEMS: STABILITY . . .
pl tends to zero whenl grows @Fig. 2~b!, curve ~1!#. The
corresponding magnitude-frequency relation has a dou
exponential downward bend@Fig. 2~c!, curve~1!#. This kind
of behavior is referred to as stability because there are
defects on high levels of the system.

V. THE AREA OF CATASTROPHE

Hierarchical models described in previous works@1,6# ex-
hibit a phase transition from stability to catastrophe in
point p5pcr . The parametrical areap.pcr corresponds to a
catastrophic behavior of the system. Ifp.pcr then the den-
sitiespl of defects of the levell increase whenl grows and
tend to unity for the highest levels of the system@Fig. 2~b!,
curve ~3!#. The unity value of densities of defects means
complete destruction of the corresponding levels of the s
tem. If the transition functionF has a stable fixed point 1
@F(1)51#, then for all values of parameterp taken in a
neighborhood of unity, densities of defectspl tend to unity
when l grows. The conditionF(1)51 obviously means tha
the coefficientAn in Eq. ~1! is nonzero —An.0. There is a
single configuration that includesn defects in a group ofn
elements, soAn51. The fixed pointF(1)51 is stable, if
F(x)2x.0 whenx is close to unity@Fig. 2~a!#. If (12x) is
close to zero, then using the second order of approximat
we obtain the following condition for the coefficientAn21:

An21.n21. ~8!

There is onlyn configurations includingn21 defects in a
group ofn elements, so the catastrophe exists in a neighb
hood of unity ifAn215n.

VI. A PHASE TRANSITION FROM STABILITY
TO CATASTROPHE

Let us consider a hierarchical system with branch num
equal to 6. All configurations containing more than 2 defe
are critical. The transition functionF is as follows:

F~x!520x3~12x!3115x4~12x!216x5~12x!1x6.
~9!

The plot of the transition function is performed in Fig. 2~a!.
The functionF(x) has 3 fixed points. Two points — 0 an
1 — are stable; fixed pointx0 is unstable.

The phase transition from stability to catastrophe occ
in the pointx0 @Fig. 2~b!#. If the density of defects on the
initial level p is less thanx0 the system demonstrates stab
ity; if the parameterp.x0 @Fig. 2~b!, curve ~1!#, then it
demonstrates catastrophic behavior@Fig. 2~b!, curve~3!#.

The magnitude-frequency relation is linear in the po
p5x0 @Fig. 2~c!, curve ~2!# and has a double exponenti
downward fall whenp,x0 @Fig. 2~c!, curve~1!#. The similar
phase transition from stability to catastrophe was previou
observed in hierarchical models@1,6,7#.

VII. SELF-ORGANIZED CRITICALITY AREA

The hierarchical system described above has a trans
function F with 3 fixed points. The transition functions o
systems considered below have 5 fixed points. To ob
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areas of stability and catastrophe in the neighborhood of z
and unity, respectively, the transition function has to ha
0 and 1 as stable fixed points.

Let us denote three other fixed points asx1, x2, and x3
@Fig. 3~a!#. Pointsx1 and x3 are unstable; intervals (0,x1)
and (x3,0) correspond to areas of stability and catastrop
respectively. In contrast to the previous case of phase tra
tion ~see Sec. VI!, a whole interval (x1 ,x3) exists between
these two areas.

In this section we investigate possible kinds of behav
of the densities of defectspl on the interval (x1 ,x3), when
the magnitude-frequency relation is linear on the log/l
plot. The linearity of the magnitude-frequency relation f
the whole transition interval (x1 ,x3) is referred to as the
self-organized criticality phenomenon.

A. The case of stationary behavior

Let us consider a hierarchical system with branch num
equal to 6. All configurations containing 2, 5, and 6 defe
are critical. The transition functionF is as follows:

F~x!515x2~12x!416x5~12x!1x6. ~10!

The functionF is plotted on Fig. 3~a!. It has five fixed
points; three of them—0,x2, 1—are stable, and the othe

FIG. 3. Hierarchical system representing a stable behavior in
area of self-organized criticality. Branch number of the mode
equal to 6. All configurations containing 2, 5, or 6 defects a
critical. ~a! Transition functionF(x). The area of stability corre-
sponds to the interval (0,x1), the area of self-organized criticality
corresponds to the interval (x1 ,x3), the area of catastrophe corre
sponds to the interval (x3,1). ~b! Densities of defects vs level o
hierarchy for different values of parameterp. Curve~1! corresponds
to the area of stabilityp50.1,x1; curves~2! and~3! correspond to
the area of self-organized criticalityx1,p,x3: p50.25: ~2!;
p50.78: ~3!; curve ~4! corresponds to the area of catastrop
p50.92.x3. ~c! Magnitude-frequency relation for different value
of parameterp. ~1!: in the area of stabilityp50.1,x1; ~2!: in the
area of self-organized criticalityx1,p50.4,x3. A slope of the
straight line~2! is equal to unity.
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two—x1, x3—are unstable. The interval (0,x1) of values of
the parameterp corresponds to the phase of stability. T
densities of defectspl fall to zero whenl grows @Fig. 3~b!,
curve~1!#; the corresponding magnitude-frequency curve
a double exponential downward bend@Fig. 3~c!, curve ~1!#.
The interval (x3,1) corresponds to the catastrophic behav
of the system@Fig. 3~b!, curve~3!#. If parameterp is inside
the interval (x1 ,x3) then the densities of defectspl tend to
the constant valuex2 when l grows @Fig. 3~b!, curve~2!#.

It follows from Eq.~7! that the corresponding magnitud
frequency relation demonstrates a linear behavior in log
plot with a slope equal to unity@Fig. 3~c!, curve~2!#, which
is similar to the behavior observed in the critical point of t
phase transition from stability to catastrophe@Fig. 2~c!, curve
~2!#.

The linear form of the magnitude-frequency relation e
ists for all values of parameterp inside the interval
(x1 ,x3), so the interval (x1 ,x3) corresponds to the self
organized criticality behavior of the system. The densities
defects tend to a constant value, so this case is referred
self-organized criticality with a stationary solution.

B. The case of periodic behavior

Let us consider a hierarchical system with branch num
11. All configurations containing 2, 9, 10, and 11 defects
critical. Transition functionF is as follows:

F~x!555x2~12x!9155x9~12x!2111x10~12x!1x11.
~11!

The transition functionF has five fixed points@Fig. 4~a!#.
There are two stable fixed points~0, 1! and three unstable
fixed points (x1, x2, andx3). In contrast to the previous cas
the absolute value of derivationF8(x) in the fixed pointx2 is
greater than unity:F8(x2).1. The interval (0,x1) of values
of parameters corresponds to the phase of stability@Figs.
4~b!, 4~c!, curve~1!#. The interval (x3,1) corresponds to the
phase of catastrophe@Fig. 4~b!, curve~3!#.

If x1,p,x3 andpÞx2 then the relation between dens
ties of defectspl and the corresponding levell is periodic
with period equal to 2@Fig. 4~b!, curve~2!#. The magnitude-
frequency relation corresponding to the interval (x1 ,x3) of
values of the parameterp is linear with a slope equal to unit
@Fig. 4~c!, curve~2!#. Thus this kind of behavior is referre
to as self-organized criticality with a periodic solution.

C. The case of chaotic behavior

Let us consider a hierarchical system with branch num
equal to 11. All configurations containing 2, 3, 10, and
defects are critical. The transition functionF is expressed as
follows:

F~x!555x2~12x!91165x3~12x!8111x10~12x!1x11.
~12!

The transition functionF is similar to the one considered i
Sec. VII B @Fig. 4~a!#. But the absolute value of the deriva
tion F8(x) in the unstable fixed pointx2 is greater than in
previous case. Intervals (0,x1) and (x3,1) correspond to the
phases of stability and catastrophe, respectively@Fig. 5~a!,
curves~1,3!#.
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If parameterp is inside the interval (x1 ,x3) the relation
between densities of defectspl and the levell is chaotic@Fig.
5~a!, curve~2!#. Possible values of densities of defectspl for
big values of levell are represented on Fig. 5~b!. The corre-
sponding magnitude-frequency relation is linear with a slo
equal to unity@Fig. 5~c!, curve ~2!#, so this kind of system
behavior is referred to as self-organized criticality with
chaotic solution.

VIII. THE ALTERNATION OF INTERVALS
OF SELF-ORGANIZED CRITICALITY
AND CATASTROPHIC BEHAVIOR

In hierarchical systems considered in the previous sec
the transition functionF(x) has 5 fixed points and for the
entire interval (x1 ,x3) it satisfies to following condition

x1,F~x!,x3 . ~13!

Let us consider a system in which the transition functionF
has 5 fixed points but contradicts the condition~13!.

In a hierarchical system with branch number equal to
all configurations that contain 2, 3, 4, 5, 8, 9, 10, and
defects are critical. Transition functionF has the following
form:

FIG. 4. Hierarchical system representing a periodic behavio
the area of self-organized criticality. Branch number of the mode
equal to 11. All configurations containing 2, 9, 10, or 11 defects
critical. ~a! Transition functionF(x). The area of stability corre-
sponds to the interval (0,x1), the area of self-organized criticality
corresponds to the interval (x1 ,x3), the area of catastrophe corre
sponds to the interval (x3,1). ~b! Densities of defects vs level o
hierarchy for different values of parameterp. Curve~1! corresponds
to the area of stabilityp50.02,x1; curves~2!–~4! correspond to
the area of self-organized criticalityx1,p,x3: p50.05: ~2!;
p50.2: ~3!; p50.85: ~4!; curve ~5! corresponds to the area of ca
tastrophep50.9.x3. ~c! Magnitude-frequency relation for differ
ent values of parameterp. ~1!: in the area of stability
p50.02,x1; ~2!: in the area of self-organized criticality
x1,p50.2,x3. A slope of the straight line~2! is equal to unity.
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F~x!555x2~12x!91165x3~12x!81330x4~12x!5

1462x5~12x!61165x8~12x!3155x9~12x!2

111x10~12x!1x11. ~14!

Maximal value of the functionF(x) for the interval
(x1 ,x2) is greater thanx3 @Fig. 6~a!#. If parameterp is cho-
sen inside the interval (x1 ,x2), so thatF(p).x3, then the
densities of defectspl tend to unity whenl grows@Fig. 6~b!,
curve ~3!#. Thus the system demonstrates the catastrop
behavior not only for the interval (x3,1) but also for the
infinite sequence of intervalsDxi . For each intervalDxi
there is an integer numberi such that the compositionF ( i )

applied to the intervalDxi maps the interval into the interva
(x3,1). IntervalsDxi may be constructed as a set of imag
of the intervalDx15(x11,x12) for the compositionF

2 i . The
initial interval (x11,x12) is defined as follows:

x1,x11,x12,x2 , F~x11!5F~x12!5x3 . ~15!

If parameterp is chosen inside the interval (x1 ,x3) but
outside intervalsDxi then the densities of defectspl tend to
the constant valuex2. Thus, the set of intervals additional t
the intervalsDxi correspond to self-organized criticalit
@Fig. 6~b!, curves~2! and~4!#. The areas of catastrophic an
self-organized criticality behavior are represented in Fi
6~c! and 6~d!, respectively.

FIG. 5. Hierarchical system representing a chaotic behavio
the area of self-organized criticality. Branch number of the mode
equal to 11. All configurations containing 2, 3, 10, or 11 defects
critical. ~a! Densities of defects vs level of hierarchy for differe
values of parameterp. ~1!: in the area of stabilityp50.02,x1; ~2!:
in the area of self-organized criticalityp50.25,x1,p,x3; ~3!: in
the area of catastrophep50.98.x3. ~b! Possible values of densitie
pl for p50.25, levels froml54000 to l55000. ~c! Magnitude-
frequency relation for different values of parameterp. ~1!: in the
area of stabilityp50.02,x1; ~2!: in the area of self-organized criti
cality x1,p50.25,x3. A slope of the straight line~2! is equal to
unity.
ic

s
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IX. THE ALTERNATION OF INTERVALS OF STABILITY
AND SELF-ORGANIZED CRITICALITY BEHAVIOR

In this section we propose an example of a system w
alternating intervals of stability and self-organized critical
behavior. Let us consider a hierarchical system with bra
number 15. All configurations containing 2, 14, and 15 d
fects are critical. The transition functionF(x) is as follows:

F~x!5105x2~12x!13115x14~12x!1x15. ~16!

The minimum value of functionF(x) on the interval
(x2 ,x3) is approximately equal to 2.531023, which is less
thanx1'1.131022 @Figs. 7~a!, 7~b!#. Then there are areas o
stability inside the interval (x2 ,x3) that alternate with area
of self-organized criticality behavior.

This alternation is similar to that described in Sec. VIII.
parameterp of the system is inside an area of stability, th
densities of defectspl tend to zero when the levell grows
@Fig. 7~c!, curves~1! and ~3!#. If parameterp is inside an
area of self-organized criticality, then the densitiespl tend to
a periodic solution with period equal to 4@Fig. 7~c!, curves
~2! and ~4!#. If parameterp is greater thanx3, than the den-
sities tend to unity, which corresponds to catastrophic beh
ior @Fig. 7~b!, curve~5!#.

It is possible to obtain a more complicated behavior
cluding the alternation of intervals of stability, self-organiz
criticality, and catastrophe inside the intervalx1 ,x3. The

in
s
e

FIG. 6. Hierarchical system representing an alternation of ar
of the self-organized criticality and catastrophe. Branch numbe
the model is equal to 11. All configurations containing 2, 3, 4,
8, 9, 10, or 11 defects are critical.~a! Transition functionF(x).
Interval (0,x1) corresponds to the area of stability; interva
(x11,x12) and (x3,1) correspond to the area of catastrophe.~b! Den-
sities of defects vs level of hierarchy for different values of para
eter p. ~1!: in the interval of stabilityp50.02,x1; ~2!: in the in-
terval of self-organized criticalityp50.2; ~3!: in the interval of
catastrophex11,p50.3,x12; ~4!: in the interval of self-organized
criticality p50.7; ~5!: in the interval of catastrophep50.9.x3. ~c!
Areas of catastrophe.~d! Areas of self-organized criticality.
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6402 55E. M. BLANTER AND M. G. SHNIRMAN
transition functionF(x) which determines this kind of alter
nation inside the intervalx1 ,x3, satisfies the following con-
ditions:

min
~x1 ,x3!

F~x!,x1 , ~17!

max
~x1 ,x3!

F~x!.x3 . ~18!

We do not consider examples of this kind of system
havior because it is a composition of simple behaviors c
sidered above.

X. DISCUSSION OF RESULTS

We investigated the basic kinds of transition behav
from stability to catastrophe for a simple hierarchical syst
of defect development. The transition functionF determines
the behavior of the system. Hierarchical systems with th
fixed points of the transition functionF demonstrate a phas
transition from stability to catastrophe when fixed poin
F(0)50 andF(1)51 are stable. It is claimed that if th
transition functionF has five fixed points, then instead of
phase transition point, a transition interval appears betw
the areas of stability and catastrophe. The behavior of
system inside the transition interval (x1 ,x3) was investi-
gated.

It is observed that an area of the self-organized critica
always exists inside the transition interval (x1 ,x3). The area

FIG. 7. Hierarchical system representing an alternation of a
of stability and self-organized criticality. Branch number of t
model is equal to 15. All configurations containing 2, 14, or
defects are critical.~a! Transition functionF(x). Intervals (0,x1)
and (x11,x12) correspond to the area of stability, interval (x3,1)
corresponds to the area of catastrophe.~b! The enlargement of~a!
for 0,F(x),0.1. ~c! Densities of defects vs level of hierarchy fo
different values of parameterp. ~1!: in the interval of stability
p50.01,x1; ~2!: in the interval of self-organized criticality
p50.3; ~3!: in the interval of stabilityx11,p50.5,x12; ~4!: in the
interval of self-organized criticalityp50.8; ~5!: in the interval of
catastrophep50.991.x3.
-
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of self-organized criticality coincides with the transition in
terval if the transition functionF satisfies to the following
conditions:

min
~x1 ,x3!

F~x!>x1 , ~19!

max
~x1 ,x3!

F~x!<x3 . ~20!

If the transition function contradicts to the condition~19!,
then the alternation of areas of self-organized criticality w
areas of stability appears inside the transition inter
(x1 ,x3). If the transition functionF contradicts the condition
~20!, then the alternation of areas of self-organized critica
with areas of catastrophe appears. The alternation of area
all possible kinds of system behavior — stability, se
organized criticality, and catastrophe — appears inside
transition interval (x1 ,x3), when the transition functionF
satisfies both conditions~17! and ~18!.

The alternation of areas of self-organized criticality wi
areas of catastrophe and/or stability is a new interesting
ture of the described class of hierarchical systems. The
of alternating areas tends to zero in a neighborhood of
corresponding fixed point of the transition functionF(x)
@Figs. 6~c! and 6~d!#. It means that in the neighborhood o
this point the observed behavior became unstable and a s
change of system parameter leads to multiple change
system behavior. There is an infinite number of phase tr
sitions from self-organized criticality to catastrophe in t
neighborhood of the fixed pointx1 @Figs. 6~c! and 6~d!#.
There is some similarity with a cascade of phase transiti
observed in the theory of spin glasses@22#.

The heterogeneity of space distribution of earthqua
may be connected with an alternation of self-organized c
cality and stability areas. If small variations of parameter,
we obtained in the model, lead to the change of obser
behavior then the small spatial variations of the stress
lithosphere will naturally lead to the spatial heterogeneity
seismicity.

The self-organized criticality corresponds to differe
kinds of relations between the densities of defectspl and
level l . The behavior of densities of defects may be stab
periodic, and chaotic. It depends on the derivation of
transition functionF in the fixed pointx2. The magnitude-
frequency relation in all cases remains linear with small
viations from the main trend. Some deviations of t
magnitude-frequency relation from the linearity in seism
observations may be connected with a chaotic dependenc
the number of earthquakes on their sizes, exhibiting the tr
sition area of self-organized criticality.

We did not investigate all kinds of possible transition b
havior from stability to catastrophe. To obtain more comp
cated behavior in a similar construction it is possible to ta
a larger branch numbern and construct a transition functio
F(x) with more fixed points or stronger nonmonotone b
havior.

The suggested hierarchical constructions reflect gen
properties of the self-organized criticality phenomenon a
cannot be applied for a more detailed analysis of a partic

as
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physical system. Nevertheless the nontrivial and complex
havior of simple systems described above demonstrates
hierarchical systems are interesting objects of future inve
gations.
,
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